Arbuscular mycorrhizal fungi differ in their ability to regulate the expression of phosphate transporters in maize (<i>Zea mays</i> L.)
نویسندگان
چکیده
Previous studies have found that some phosphate (Pi) starvation inducible transporter genes are downregulated and arbuscular mycorrhizal (AM) inducible Pi transporter genes are upregulated in maize roots associated with the fungus Glomus intraradices. However, little is known about the functional diversity of different AM fungal species in influencing the expression of Pi transporters in maize roots. Here, we studied the expression of two Pi transporter genes ZEAma:Pht1;3 (Pi starvation inducible) and ZEAma:Pht1;6 (AM inducible) in maize root colonized by different AM fungal inoculants. Non-mycorrhizal maize, maize colonized by Glomus deserticola (CA113), Glomus intraradices (IA506), Glomus mosseae (CA201), Gigaspora gigantea (MN922A) and the co-inoculation of all four species were established. The expression patterns of the two genes were quantified using real-time, reverse transcription polymerase chain reaction. The expression level of ZEAma:Pht1;6 was 26–135 times higher in AM plants than in non-mycorrhizal maize roots, whereas the expression level of ZEAma:Pht1;3 was five to 44 times lower in AM plants than in nonmycorrhizal plants. Expression of the two genes differed with inoculation treatment, and increasing the diversity of AM fungi in maize roots led to greater expression of ZEAma: Pht1;6 as well as Pi uptake in shoots. The expression of ZEAma:Pht1;6 was significantly positively correlated with AM colonization rate, concentration of AM biomarkers in maize roots, Pi uptake and dry weight of shoot, but negatively correlated with the expression of ZEAma:Pht1;3. Addition of Pi fertilizer at a low concentration significantly increased the expression of ZEAma:Pht1;6 but had no effect on the expression of ZEAma:Pht1;3.
منابع مشابه
Phosphorus acquisition efficiency in arbuscular mycorrhizal maize is correlated with the abundance of root-external hyphae and the accumulation of transcripts encoding PHT1 phosphate transporters.
Plant interactions with arbuscular mycorrhizal fungi have long attracted interest for their potential to promote more efficient use of mineral resources in agriculture. Their use, however, remains limited by a lack of understanding of the processes that determine the outcome of the symbiosis. In this study, the impact of host genotype on growth response to mycorrhizal inoculation was investigat...
متن کاملPhosphate Uptake from Phytate Due to Hyphae-Mediated Phytase Activity by Arbuscular Mycorrhizal Maize
Phytate is the most abundant form of soil organic phosphorus (P). Increased P nutrition of arbuscular mycorrhizal plants derived from phytate has been repeatedly reported. Earlier studies assessed acid phosphatase rather than phytase as an indication of mycorrhizal fungi-mediated phytate use. We investigated the effect of mycorrhizal hyphae-mediated phytase activity on P uptake by maize. Two ma...
متن کاملArbuscular mycorrhizal fungi colonisation of Cry3 toxin- producing Bt maize and near isogenic maize
Despite the fact that, on average, approximately 5–6 metric tons/ha of Bt maize stubble enter the soil on more than 170 million of hectares worldwide, the environmental impact of genetically modified maize plants on the arbuscular mycorrhizal fungi (AMF) is poorly known. In this study, the mycorrhizal colonisation on the roots of Bt maize (DAS-59122-7) and its near isogenic line was examined du...
متن کاملSystematic Identification, Evolution and Expression Analysis of the Zea mays PHT1 Gene Family Reveals Several New Members Involved in Root Colonization by Arbuscular Mycorrhizal Fungi
The Phosphate Transporter1 (PHT1) family of genes plays pivotal roles in the uptake of inorganic phosphate from soils. However, there is no comprehensive report on the PHT1 family in Zea mays based on the whole genome. In the present study, a total of 13 putative PHT1 genes (ZmPHT1;1 to 13) were identified in the inbred line B73 genome by bioinformatics methods. Then, their function was investi...
متن کاملEffects of metal phytoextraction practices on the indigenous community of arbuscular mycorrhizal fungi at a metal-contaminated landfill.
Phytoextraction involves use of plants to remove toxic metals from soil. We examined the effects of phytoextraction practices with three plant species (Silene vulgaris, Thlaspi caerulescens, and Zea mays) and a factorial variation of soil amendments (either an ammonium or nitrate source of nitrogen and the presence or absence of an elemental sulfur supplement) on arbuscular mycorrhizal (AM) fun...
متن کامل